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Abstract

In a free electron laser (FEL), the electron bunch energy profile at the undulator
entrance can have temporal structures. In this paper, we derive the FEL Green’s
function for the case of the electron bunch having both energy chirp and energy
curvature by solving the coupled Vlasov–Maxwell equations. We give an
integral representation as well as an analytic expression for the Green’s function.
The analytical expression is compared with direct numerical results. Evolution
of the Green’s function temporal duration and the frequency bandwidth are
studied.

PACS numbers: 41.60.Cr, 43.58.Ry

(Some figures in this article are in colour only in the electronic version)

1. Introduction

An x-ray free electron laser (FEL) calls for a high quality electron bunch with a low emittance,
a high peak current and a high energy [1]. During the acceleration, bunch compression
and transportation, the electron bunch is subjected to the radio frequency curvature and
wakefield effects. Thus, the energy profile of the electron bunch coming into the undulator can
have a temporal structure. These properties will impact the FEL process in the undulator. In
this paper, we derive the Green’s function for the case when the electron bunch has an initial
energy chirp and an energy curvature. With the Green’s function solved, the seeded FEL
performance can be formulated as the seed convoluting with the Green’s function. Therefore,
the impact of the electron bunch initial energy profile on the seeded FEL is ready to be
studied. This will be reported in an accompanied paper [2]. The effects of the electron bunch
initial energy chirp on the FEL performance and the possible short-pulse generation have been
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studied for self-amplified spontaneous emission (SASE) FEL [3, 4], and a seeded FEL as well
[5, 6]. In the later case, the situation is complicated by the interplay of the electron energy
chirp and a possible frequency chirp in the seed. In this paper, we further include the effect
from a possible energy curvature in the electron bunch when it enters the undulator. Our
study for the first time includes the effect of the seed temporal duration on the over all FEL
properties.

The paper is organized as the follows. In section 2, the coupled Vlasov–Maxwell equations
are introduced and solved, which gives an integral representation for the FEL Green’s function.
An analytical expression for the Green’s function is also obtained. To check its validity, the
analytical expression is compared with the numerical results. The properties of the Green’s
function is studied in section 3. We conclude the paper with discussions in section 4. Derivation
details are given in the appendices.

2. Vlasov–Maxwell analysis for an initial value problem

To analyze the start-up of a seeded FEL amplifier we use the coupled set of Vlasov and
Maxwell equations which describe the evolution of the electrons and the radiation fields [7].
Solving this set of equations provides an integral representation for the Green’s function.

2.1. Coupled Vlasov–Maxwell equations

We follow the analysis and notation of [3, 5, 7]. Dimensionless variables are introduced as
Z = kwz, θ = (k0 + kw)z − ω0t , where k0 = 2π/λ0, ω0 = k0c, and kw = 2π/λw with λ0

being the radiation wavelength, λw being the undulator period, and c being the speed of light
in vacuum. We also introduce p = 2(γ − γ0)/γ0 as the measure of energy deviation, with
γ being the Lorentz factor of an electron in the electron bunch, and γ0 is the resonant energy
which is given by

λ0 ≈ λw

1 + K2

2

2γ 2
0

, (1)

for a planar undulator, where the undulator parameter is K ≈ 93.4Bwλw with Bw being the
peak magnetic field in Tesla and λw is the undulator period in meter. The electron distribution
function is ψ(θ, p,Z). The FEL electric field is written as E(t, z) = A(θ,Z) ei(θ−Z) with
A(θ,Z) being the slow varying envelope function. The one-dimensional linearized Vlasov–
Maxwell equations are

∂ψ

∂Z
+ p

∂ψ

∂θ
− 2D2

γ 2
0

(A eiθ + A∗ e−iθ )
∂ψ0

∂p
= 0, (2)

and, (
∂

∂Z
+

∂

∂θ

)
A(θ,Z) = D1

γ0
e−iθ

∫
dp ψ(θ, p,Z), (3)

where in SI units,

D1 = eawn0[JJ ]

2
√

2kwε0

, and D2 = eaw[JJ ]√
2kwmc2

, (4)

with e and m being the charge and mass of the electron, ε0 ≈ 8.85 × 10−12 F m−1 being
the vacuum permittivity, n0 is the electron bunch density and [JJ ] = J0

[
a2

w

/
2
(
1 + a2

w

)] −
J1
[
a2

w

/
2
(
1 + a2

w

)]
, where the dimensionless rms undulator parameter aw ≡ K/

√
2.
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For an electron bunch having both a linear chirp and a second-order curvature, i.e.,

γ = γ0 +
dγ

dt

∣∣∣∣
t=0

t0 +
1

2

d2γ

dt2

∣∣∣∣
t=0

t2
0 + · · · , (5)

the electron distribution can be linearized on

ψ0 = δ
(
p + μθ0 + νθ2

0

/
2
)

(6)

with θ0 = θ − pZ, and⎧⎪⎪⎪⎨
⎪⎪⎪⎩

μ = dγ

dt

2

γ0ω0

∣∣∣∣
t=0

ν = − d2γ

dt2

2

γ0ω
2
0

∣∣∣∣
t=0

,

(7)

characterizing the energy chirp and the energy curvature in the electron bunch, respectively.
Solving the Vlasov equation (2), and inserting the results in the Maxwell equation (3), assuming
μZ � 1 and νθZ � 1, we have(

∂

∂Z
+

∂

∂θ

)
A(θ,Z) = D1

γ0

∑
j

e−iθj +i(μθj +νθ2
j /2)Zδ(θ − θj )

+ i(2ρ)3
∫ Z

0
dZ′(Z − Z′) ei(μθ+νθ2/2)(Z−Z′)A(θ, Z′), (8)

where θj = −ω0tj and (2ρ)3 = 2D1D2
/
γ 3

0 with ρ being the Pierce parameter [8].
We introduce the Laplace transform

f (θ, s) =
∫ ∞

0
dZ e−sZA(θ, Z). (9)

Equation (8) is then rewritten in the Laplace frequency domain as

∂f (θ, s)

∂θ
+

(
s − i(2ρ)3

[s − i(μθ + νθ2/2)]2

)
f (θ, s)

= A(θ, 0) +
D1

γ0

∑
j

e−iθj δ(θ − θj )

s − i
(
μθj + νθ2

j

/
2
) , (10)

which yields the solution

f (θ, s) =
∫ θ

−∞
dθ ′ e−s(θ−θ ′)+K(θ,θ ′,s,μ,ν)

×
⎡
⎣A(θ ′, 0) +

D1

γ0

∑
j

e−iθj δ(θ ′ − θj )

s − i
(
μθj + νθ2

j

/
2
)
⎤
⎦ , (11)

where

K(θ, θ ′, s, μ, ν) =
∫ θ

θ ′

i(2ρ)3

[s − i(μθ ′′ + νθ ′′2/2)]2
dθ ′′. (12)

In the square bracket in equation (11), the first term A(θ ′, 0) characterizes the initial seed for
a seeded FEL, while the second term models the shot noise source for the SASE FEL. Since
we are considering only the seeded FEL, in the following we will keep only the term which
depends on the initial seed, so equation (11) becomes

f (θ, s) =
∫ θ

−∞
dθ ′ e−s(θ−θ ′)+K(θ,θ ′,s,μ,ν)A(θ ′, 0). (13)

3
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The inverse Laplace transform gives the FEL field envelope along the undulator. After
performing the contour integral first, the FEL field envelope can be written as the convolution
of the initial seed with a Green’s function

A(θ,Z) =
∫ ∞

0
dξA(θ − ξ, 0)G(θ, ξ, Z, s), (14)

with the Green’s function G(θ, ξ, Z, s) defined as

G(θ, ξ, Z, s) ≡
∫

c

ds

2πi
es(Z−ξ)+K(θ,ξ,s,μ,ν). (15)

Note that due to the energy chirp and energy curvature in the electron bunch, the Green’s
function depends separately on ξ and θ , which are the FEL amplifier time variables, thus losing
the translational invariance property. In general, for a Green’s function without translation
invariance, people normally decompose the Green’s function into parts which have translation
invariance and parts which break translation invariance. The part which breaks translation
invariance normally is small and can be treated as perturbation, which usually describes local
effects.

For convenience the integral representation in equation (14) is rewritten using the notation
ẑ = 2ρZ, ŝ = ρθ, ξ̂ = ρξ, α̂ = −μ/(2ρ2), β̂ = ν/(2ρ3) and p̂ = s/(2ρ), yielding

A(ŝ, ẑ) =
∫ ∞

0
dξ̂A(ŝ − ξ̂ , 0)g(ŝ, ẑ, ξ̂ , α̂, β̂), (16)

and

g(ŝ, ẑ, ξ̂ , α̂, β̂) = 2
∫

c

dp̂

2π i
eF̂(p̂,ŝ,ẑ,ξ̂ ,α̂,β̂), (17)

where F̂ denotes the phasor

F̂(p̂, ŝ, ẑ, ξ̂ , α̂, β̂) = p̂(ẑ − 2ξ̂ ) + K̂(p̂, ŝ, ẑ, ξ̂ , α̂, β̂). (18)

Note that similar notation was adopted in [4].

2.2. Exact expression of the Green’s function

The integral in equation (12) gives

K =
i(2ρ)3

[
μ+θ ′′ν

is+θ ′′μ+θ ′′2ν/2 +
2ν arctan

(
μ+θ ′′ν√
2iνs−μ2

)
√

2iνs−μ2

]

μ2 − 2iνs

∣∣∣∣∣∣∣∣∣∣

θ ′′→θ

θ ′′→θ ′

. (19)

Or according to equation (18),

K̂ =
2i

[
ŝ ′′β̂−α̂

ip̂−ŝ ′′α̂+ŝ ′′2β̂/2
+

2β̂ arctan
(

ŝ′′ β̂−α̂√
2iβ̂p̂−α̂2

)
√

2iβ̂p̂−α̂2

]

α̂2 − 2iβ̂p̂

∣∣∣∣∣∣∣∣∣∣

ŝ ′′→ρθ

ŝ ′′→ρθ ′

. (20)

The Green’s function describing the exponential growth can be evaluated by using the
expression for K̂ in equation (20) and numerically performing the integral in equation (17),
choosing a closed anticlockwise path including the singularities, when ξ̂ 
= 0 and ξ̂ < ẑ/2.

4
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The Green’s function is crucial, since once the Green’s function is known, the seeded FEL
process is obtained based on the integral representation in equation (16), i.e., the seeded FEL
is the convolution of the seed with the Green’s function. To gain some insight to the seeded
FEL process, in the following, we present an estimate of the Green’s function analytically, but
postpone the direct numerical evaluation based on the exact expression in equation (20) to a
later subsection.

2.3. Analytical approximation for the Green’s function

A closed analytical form for the Green’s function is estimated by a saddle point approximation.
The saddle point p̂s is found as a solution of

dF̂(p̂)

dp̂

∣∣∣∣
p=ps

= 0 (21)

with F̂ given in equation (18) and K̂ in equation (20). At the saddle point, the phasor has the
highest real part; therefore, for long undulators, the growth mode with the highest real part
dominates the other ones. The Green’s function is then approximated as

g(ŝ, ẑ, ξ̂ , α̂, β̂) ≈ 2 exp[F̂(p̂s, ŝ, ẑ, ξ̂ , α̂, β̂)]

[2πF̂ ′′(p̂s, ŝ, ẑ, ξ̂ , α̂, β̂)]1/2
. (22)

As detailed in appendix A, to estimate p̂s, F̂(p̂s) and F̂ ′′(p̂s) an order analysis is performed
and the following expressions can be used to evaluate the Green’s function:

F̂(p̂s) = i
1
3 ẑ − i

1
3 (ẑ − 6ξ̂ )2

4ẑ
+

iα̂

2
(ẑ − 2ξ̂ )(ξ̂ − 2ŝ)

+
iẑβ̂

36

(
18ξ̂ ẑ − ẑ2

18
+ (ŝ − ξ̂ )(ẑ − 6ξ̂ + 12ŝ)

)
+

iβ̂

6
(ẑ − 6ξ̂ )(ŝ − ξ̂ )2

+
i

5
3 ẑ4

432

(
α̂2

ẑ
− α̂β̂

6
+

ẑβ̂2

135

)
+

i−
1
3 ẑ2β̂(ŝ − ξ̂ )(12α̂ξ̂ − ŝẑβ̂)

432

+
i−

1
3 (ẑ − 6ξ̂ )ẑ3

432

(
α̂2

ẑ
− α̂β̂

3
+

ẑβ̂2

45
+

β̂2(ŝ − ξ̂ )

6

)
(23)

F̂ ′′(p̂s) = − i
5
3 (5ẑ2 − 24ẑξ̂ + 36ξ̂ 2)

ẑ
+

iẑ4

108

(
α̂2

ẑ
− α̂β̂

6
+

ẑβ̂2

135

)

+
iẑ3β̂(ẑ − 6ξ̂ )

648

(
α̂ − 4ẑβ̂

45

)
+

iẑ3β̂(ŝ − ξ̂ )

108
(ŝβ̂ − 2α̂). (24)

To further obtain a Green’s function that yields a closed form when convoluted with a Gaussian
seed laser, we rewrite equation (22) as

g(ŝ, ẑ, ξ̂ , α̂, β̂) ≈
√

2

π
eF̂(p̂s ,ŝ,ẑ,ξ̂ ,α̂,β̂)− 1

2 ln[F̂ ′′(p̂s ,ŝ,ẑ,ξ̂ ,α̂,β̂)]. (25)

The expression of the exponential factor in equation (25) is given in equation (A.5).

5
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Figure 1. Comparison between the Green’s function of equation (17) (dashed red line), that one
of equation (22) numerically calculated (solid green line) and the same one obtained as the 3rd
order saddle point approximation (dash-dotted blue line) for module (on the top) and phase (on the
bottom).

Table 1. The parameters.

ρ α̂ β̂ γ ẑ

0.005 0.0022 7.2 × 10−5 2231 21

2.4. Comparison between the analytical and the numerical Green’s functions

In order to evaluate the quality of the analytical treatment and the confidence degree of
the assumption concerning the approximation, we perform a comparison between the exact
Green’s function obtained numerically in equations (17) and (20) and the equation derived
from the saddle point approximation, see equation (25).

For this purpose, in figure 1 we consider a realistic set of parameters reported in table 1.
These parameters are close to the design parameters of FERMI@Elettra project [9]. We plot
the Green’s function of equation (17) and that of equation (22) as a function of ξ̂ . This shows
that the analytical approximation is in a very good agreement with the numerical solution,
particularly close to the stationary phase condition, thus we continue to discuss the Green’s
function by using the analytical form.

3. Properties of the Green’s function

The Green’s function contains a time-independent contribution due to the undulator parameters
and a time-dependent contribution coming from the chirp and curvature on the electron bunch
energy, thus it depends on both variables ξ̂ and ŝ separately. The properties of the amplitude
and phase of the Green’s function strongly affect the characteristic of the FEL radiation along

6
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Figure 2. Position of the stationary phase point in ŝ units with ẑ = 25 and ŝ = ẑ/6.

the undulator. Furthermore, the ratio between the Green’s function temporal duration and the
seed laser pulse temporal duration plays an important role as well. When the temporal duration
of the seed laser is longer than that of the Green’s function, the FEL radiation properties can
be evinced directly by the Green’s function. In particular, the central frequency shift and the
frequency chirp of the FEL depend on the electron bunch time-dependent structure (i.e., on
α̂ and β̂). This will be reported in the accompanying paper [2]. Nevertheless, the study of
the standing alone Green’s function can give an insight into the characteristics of the FEL
radiation independently of the seed temporal duration and shape. This will be the focus of the
following sections in this paper.

The effects of a linear chirp and quadratic curvature on the real and imaginary part of
the exponential factor in equation (A.5) are studied in appendix B. Both linear and quadratic
terms have a small influence on the position of the amplitude peak of the Green’s function
(equation (B.3)), since α̂ and β̂ only provide second-order term contributions. The linear chirp
and the curvature affect much more the phase of the Green’s function. The position of the
stationary point of the phase is found according to equation (B.4), and it is plotted in figure 2
as a function of the chirp parameters.

To evaluate the shift and the chirp of the FEL central frequency, we have to calculate,
respectively, the first and the second derivative in ŝ of the phase of equation (16). Actually
in the case of a seed laser much shorter than the Green’s function (i.e. approaching the delta
Dirac function), the FEL radiation is given straightforwardly by the Green’s function and the
derivation with respect to ŝ equals the derivation with respect to ξ̂ (∂ξ̂/∂ŝ ≈ 1). Thus to
evaluate the shift of the FEL central frequency in this case, we consider the first derivative
of the phase on ξ̂ as in equation (B.5). We evaluate it in the maximum amplitude of the
Green’s function (i.e. ξ̂ = ξ̂Rpp as expressed in equation (B.3)) choosing a delta function seed.
Expanding to the first order in α̂ and β̂, we obtain

∂I

∂ξ̂

∣∣∣∣
ξ̂=ŝ=ξ̂Rpp

≈ −
√

3

ẑ
+

ẑ

2
α̂ − ẑ2

36
β̂ +

6 − √
3ẑ

54
β̂. (26)
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Figure 3. Comparison between the first (above) and the second (bottom) derivative of the integral
in equation (16) (red solid line) for a long seed laser and the corresponding derivatives on ŝ of the
Green’s function phase at its peak amplitude (blue dashed line).

The second derivative of the phase on ξ̂ in equation (B.7) gives the radiation frequency chirp
in the case of a short seed:

∂2I

∂ξ̂ 2

∣∣∣∣
ŝ=ξ̂Rpp

≈ −9

ẑ
− 2α̂ +

(
4

3
√

3
+

ẑ

3

)
β̂. (27)

In this configuration equation (27) shows that both the linear chirp and quadratic curvature
have influence on the frequency chirp, but the main effect is due to the linear component.
The first term is the intrinsic frequency chirp due to the FEL interaction [5]. The second
term is inherited from the electron bunch energy chirp due to the resonant condition as in
equation (1).

In contrast when the seed laser is longer than the Green’s function, the former is almost
constant in the convolution of equation (16) and the FEL radiation phase is mostly given by
the phase of the Green’s function amplitude peak. Thus the first and second derivatives on ŝ

of the FEL radiation phase are approximately given by the corresponding derivatives on ŝ of
the Green’s function phase at its peak amplitude, as shown in figure 3. The first derivative of
the phase on ŝ in equation (B.6) evaluated in the corresponding maximum amplitude of the
Green’s function and expanded to the first order of α̂ and β̂ is

∂I

∂ŝ

∣∣∣∣
ξ̂=ξ̂Rpp

≈
√

3 − 3ẑ

9
2α̂ −

√
3(12ŝ + ẑ) − 3ẑ(12ŝ − ẑ) − 4

54
β̂. (28)

Considering the order analysis between α̂, β̂ and ẑ, equation (28) shows that even if the
quadratic curvature has influence on the central frequency shift, the main effect comes from
the linear chirp. The second derivative of the Green’s function phase on ŝ is calculated in

8
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appendix B, and its value at the peak amplitude considering only the leading terms gives

∂2I

∂ŝ2

∣∣∣∣
ξ̂=ξ̂Rpp

≈ 3z − √
3

9
2β̂ − z2 z − √

3

432
β̂2. (29)

It is worthwhile to emphasize that regarding the FEL radiation frequency chirp, the energy
curvature of the electrons becomes the main source of the frequency chirp in the case of a long
seed according to equation (B.8).

Similarly to [5] we have calculated the temporal duration and the bandwidth of the Green’s
function:

σ 2
t,α̂,β̂

= kwz

9
√

3ρω2
0

1

1 − 2η
, (30)

σ 2
ω,α̂,β̂

= 3
√

3ρω2
0

kwz

(
1 +

κ + κ2 + 2κη + 4η2

1 − 2η

)
, (31)

where

η = k3
wz3β̂ρ3[−36α̂ + β̂(

√
3 + 6kwzρ)]

2916
, (32)

κ = 2

9
kwzα̂ρ − 10

27
k2
wz2β̂ρ2 +

k3
wz3β̂2ρ3

486
√

3
− 4

9
kwzβ̂ρ2(k0z − ω0t). (33)

Equation (30) reveals that the rms temporal duration is affected through the parameter η only
by the energy curvature in the electron bunch, and this is a second-order effect. The Green’s
function bandwidth in equation (31) can be further simplified by neglecting 2η compared to 1
and third-order quantities in α̂ and β̂ obtaining the following approximated expression:

σ 2
ω,α̂,β̂

= 3
√

3ρω2
0

kwz
(1 + κ + κ2). (34)

The FEL pulse travels with a group velocity [5] of vg = ω0/(k0 + 2kw/3), we have
k0z − ω0t = −2kwz/3. The complete expression of the group velocity as a function of α̂ and
β̂ can be well approximated with the above expression since the terms in α̂ and in β̂ are at
least of the second order. So, the expression of κ in equation (32) can be simplified as

κ = 2

9
kwzα̂ρ − 2

27
k2
wz2β̂ρ2 +

k3
wz3β̂2ρ3

486
√

3
. (35)

For the parameter set in table 1, this means that the Green’s function bandwidth only increases
by a factor of less than 0.3%.

4. Conclusion

The FEL Green’s function for the case of an electron bunch having both an energy chirp and
an energy curvature has been derived by solving the coupled Vlasov–Maxwell equations. The
study of the obtained Green’s function has revealed that the linear term of the electron energy
chirp provides a shift in the FEL radiation frequency, and it is responsible for the radiation
frequency chirp when the seed laser is much shorter than the Green’s function temporal
duration, and is close to a Dirac delta-function. Otherwise in the case of a longer seed
laser, the energy curvature is mainly responsible for the frequency chirp of the FEL radiation.
Moreover the energy curvature in the electron bunch influences the Green’s function rms
temporal duration. An approximated expression of the Green’s function bandwidth as a
function of α̂ and β̂ was found.
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Appendix A. Green’s function derivation

Since the expression in equation (12) is difficult to handle, it is expanded in a power series on
μ and ν, and the phasor in equation (18) becomes

F̂(p̂, ŝ, ẑ, ξ̂ , α̂, β̂) = p̂(ẑ − 2ξ)

+
M∑

m=0

[
m∑

n=0

im+1(m + 1)!(ŝ2m−n+1 − (ŝ − ξ̂ )2m−n+1)(−α̂)nβ̂m−n

n!(m − n)!(2m − n + 1)2m−n−1p̂2+m

]
(A.1)

To estimate p̂s we introduce the slippage ζ̂ = ẑ − 6ξ̂ and seed laser temporal duration
η̂ = ŝ − ξ̂ . Then an order analysis is performed, fixing ζ̂ ∼ ε, η̂ ∼ 1, α̂ ∼ ε2, β̂ ∼ ε3

and ẑ ∼ ε−1. The saddle point p̂s ≈ p̂s0 + p̂s1ε + p̂s2ε
2 + p̂s3ε

3 + p̂s4ε
4 is obtained solving

dF̂(p̂)/dp̂ = 0 order-by-order in ε, and for this purpose we choose M = 5 in equation (A.1).
The approximated saddle point is found as

p̂s = i
1
3 − i

1
3 (ẑ − 6ξ)

2ẑ
+

α̂i

2
(ξ − 2ŝ) +

iẑβ̂

2

(
− ẑ − 12ξ

108
+

ŝ2 − ξ ŝ

ẑ

)
+ α̂2 i−

1
3 ẑ(ẑ − 18ξ)

432

+ α̂β̂
i−

1
3 ẑ2

108

(
ŝ − ξ +

10ξ − ẑ

8

)
+

i−
1
3 ẑ3β̂2

216

(
5ẑ − 42ξ

270
− ŝ − ξ

6
− (ŝ − ξ)2

ẑ

)

+
i

1
3 ẑ5

46 656

(
α̂β̂2

6
− α̂2β̂

ẑ
− 4β̂3ẑ

567

)
+

i
1
3 ẑ4

23 328
(ŝ − ξ)

(
α̂β̂2 − ẑβ̂3

12

)

+
iẑ6

62 208

(
α̂4

ẑ2
− α̂3β̂

3ẑ
+

4α̂2β̂2

105
− 13ẑα̂β̂3

7560
+

ẑ2β̂4

42 525

)
(A.2)

Substituting it back into equation (A.1) and to the second derivative of the phasor, it yields the
following expressions for the Green’s function:

F̂(p̂s) = +
3i

1
3 (ẑ − 2ξ̂ )(ẑ + 6ξ̂ )

4ẑ
+

iα̂

2
(ẑ − 2ξ̂ )(ξ̂ − 2ŝ)

+
iẑβ̂

36

[
18ξ̂ ẑ − ẑ2

18
+ (ŝ − ξ̂ )(ẑ − 6ξ̂ + 12ŝ)

]
+

iβ̂

6
(ẑ − 6ξ̂ )(ŝ − ξ̂ )2

+
i

5
3 ẑ4

432

(
α̂2

ẑ
− α̂β̂

6
+

ẑβ̂2

135

)
+

i−
1
3 ẑ2β̂(ŝ − ξ̂ )(12α̂ξ̂ − ŝẑβ̂)

432

+
i−

1
3 (ẑ − 6ξ̂ )ẑ3

432

[
α̂2

ẑ
− α̂β̂

3
+

ẑβ̂2

45
+

β̂2(ŝ − ξ̂ )

6

]

+
ẑ4β̂(ẑ − 6ξ̂ )i

1
3

699 840

[
15α̂2 − 7ẑα̂β̂

2
+

4ẑ2β̂2

21
− ẑβ̂2(ŝ − ξ̂ )

]

+
i

1
3 ẑ6

58 320

[
− α̂2β̂

2ẑ
+

α̂β̂2

12
− 2ẑβ̂3

567
+

β̂2α̂(ŝ − ξ̂ )

ẑ
− ŝβ̂3(ŝ − ξ̂ )

2ẑ

]
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+
iẑ7(ŝ − ξ̂ )

46 656

(
− α̂3β̂

ẑ2
+

α̂2β̂2

4ẑ
− 2α̂β̂3

105
+

13ẑβ̂4

30 240

)

+
iẑ7

186 624

(
α̂4

ẑ2
− α̂3β̂

3ẑ
+

4α̂2β̂2

105
− 13ẑα̂β̂3

7560
+

ẑ2β̂4

42 525

)

− i−
1
3 β̂ẑ9

141 087 744

(
10α̂4

ẑ2
− 10α̂3β̂

3ẑ
+

671α̂2β̂2

1620
− 221ẑα̂β̂3

9720
+

56ẑ2β̂4

120 285

)
(A.3)

and

F̂ ′′(p̂s) = − i
5
3 (5ẑ2 − 24ẑξ̂ + 36ξ̂ 2)

ẑ
+

iẑ4

108

(
α̂2

ẑ
− α̂β̂

6
+

ẑβ̂2

135

)

+
iẑ3β̂(ẑ − 6ξ̂ )

648

(
α̂ − 4ẑβ̂

45

)
+

iẑ3β̂(ŝ − ξ̂ )

108
(ŝβ̂ − 2α̂)

+
i−

1
3 ẑ6

11 664

[
α̂β̂2

6
− α̂2β̂

ẑ
− 4ẑβ̂3

567
+

β̂2(12α̂ − ẑβ̂)(ŝ − ξ̂ )

6ẑ
− β̂3(ŝ − ξ̂ )2

ẑ

]

+
(ẑ − 6ξ̂ )i−

1
3 ẑ5

7776

(
α̂2β̂

ẑ
− 5α̂β̂2

18
+

4ẑβ̂3

243

)

+
i

1
3 ẑ5(ŝ − ξ̂ )β̂(ẑβ̂ − 12α̂)

559 872

(
10α̂2 − 5ẑα̂β̂

3
+

127ẑ2β̂2

3780

)

+
i

1
3 ẑ7

93 312

(
5α̂4

ẑ2
− 5α̂3β̂

3ẑ
+

163α̂2β̂2

945
− 127ẑα̂β̂3

22 680
− ẑ2β̂4

127 575

)

+
iẑ9

839 808

(
α̂4β̂

ẑ2
− α̂3β̂2

3ẑ
+

103α̂2β̂3

2520
− 11ẑα̂β̂4

5040
+

4ẑ2β̂5

93 555

)
(A.4)

The terms with large denominators give small contributions to the Green’s function and are
cancelled in equations (23) and (24). It is interesting to find a Green’s function that gives a
closed form for the FEL radiation along the undulator when the initial seed is Gaussian. This
is accomplished by approximating the exponential as F̂ ′′(p̂s)

−1/2 obtaining equation (25).
The term + iβ̂

6 (ẑ − 6ξ̂ )(ŝ − ξ̂ )2 in equation (A.3) has been expanded in a power series up to
the second order from the stationary phase point of the unchirped Green’s function ξ̂ = ẑ/6.
Further the terms with powers of α̂ and β̂ larger than 2, one has large denominators and their
contribution to the Green’s function can be neglected. From equation (22) the expression of
the primitivable Green’s function is

g(ŝ, ẑ, ξ̂ , α̂, β̂) ≈ i
1
6√
πẑ

exp

{
i

1
3 ẑ − ẑ − 6ξ̂

2ẑ
− i

1
3 (ẑ − 6ξ̂ )2

4ẑ
+

iα̂

2
(ẑ − 2ξ̂ )(ξ̂ − 2ŝ)

+
iẑβ̂

36

[
18ξ̂ ẑ − ẑ2

18
+ (ŝ − ξ̂ )(ẑ − 6ξ̂ + 12ŝ)

]
+

i(6ŝ − ẑ)(ẑ − 6ξ̂ )β̂

216
(6ŝ + ẑ − 12ξ̂ )

− i
4
3 ẑ3

432

(
α̂2

ẑ
− α̂β̂

6
+

ẑβ̂2

135

) (
1 − i

1
3 ẑ
)

+
i

4
3 ẑ2β̂(ŝ − ξ̂ )

432

[
2α̂ − β̂ŝ − i

1
3 (12α̂ξ̂ − β̂ŝẑ)

]

+
i

4
3 ẑ2(ẑ − 6ξ̂ )

432

[(
α̂2

ẑ
− α̂β̂

3
+

ẑβ̂2

45

) (
1 − i

1
3 ẑ
)− β̂2(ŝ − ξ̂ )

6

(
1 + i

1
3 ẑ
)]}

. (A.5)
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Appendix B. Green’s function study

We give the expressions for the real (R) and imaginary (I) part of the exponential factor in
equation (A.5), that are useful to discuss the properties of the Green’s function,

R = −1

2
+

3ξ̂

ẑ
+

3
√

3(ẑ − 2ξ̂ )(ẑ + 6ξ̂ )

8ẑ
− α̂2 ẑ(

√
3ẑ − 1)ξ̂

144

+
α̂β̂ẑ2

144

{
1√
3

[
ẑξ̂ − ẑ2

12
+ 6(ŝ − ξ̂ )ξ̂

]
+

ẑ − 12ŝ

36

}

+
β̂2ẑ2

288

[
ẑ√
3

(
ξ̂ 2 − ŝ2 +

ŝẑ

6
+

2ẑ2

135
− 3ẑξ̂

10

)

+
1

3

(
ŝ2 +

ŝẑ

6
− 2ẑ2

135
− 2ŝξ̂ − ẑξ̂

30
+ ξ̂ 2

)]
(B.1)

and

I = 3(ẑ − 2ξ̂ )(ẑ + 6ξ̂ )

8ẑ
+ α̂

(ẑ − 2ξ̂ )(−2ŝ + ξ̂ )

2

+ β̂

(
ŝ2ẑ

2
+

ŝẑ2

36
− ẑ3

162
− ŝ2ξ̂ − 5ŝẑξ̂

6
+

ẑ2ξ̂

12
+ 2ŝξ̂ 2 − ẑξ̂ 2

6

)

+ α̂2ẑξ̂
ẑ − √

3

144
+

α̂β̂ẑ3

72

(
ẑ − 12ξ̂

72
− ξ̂ (ŝ − ξ̂ )

ẑ
+

(12ŝ − ẑ)

24
√

3ẑ

)

+
β̂2ẑ2

864

[
ẑ

(
ŝ2 − ŝẑ

6
− 2ẑ2

135
+

3ẑξ̂

10
− ξ̂ 2

)

+
√

3

(
2ŝξ̂ − ŝ2 − ŝẑ

6
+

2ẑ2

135
+

ẑξ̂

30
− ξ̂ 2

)]
. (B.2)

Both equation (B.1) and (B.2) are quadratic function of ξ̂ . The position of the peak of the real
part which gives the maximum amplitude of the Green’s function is found to be

ξ̂Rpp =
(

1

3
√

3
+

ẑ

6

)⎧⎪⎨
⎪⎩1 +

− ẑ2(−1+
√

3ẑ)α̂2

216(2+
√

3ẑ)
− ẑ3(4−6

√
3ŝ+

√
3ẑ)α̂β̂

648(2+
√

3ẑ)
+

ẑ3[20
√

3−180ŝ+3ẑ(29+
√

3ẑ)]β̂2

116640(2+
√

3ẑ)

1 − ẑ3β̂(−12
√

3α̂+β̂+
√

3ẑβ̂)
3888

√
3

⎫⎪⎬
⎪⎭ .

(B.3)

The position of the peak of the imaginary part which gives the stationary phase point is found
to be

ξ̂Ipp = ẑ

6

⎧⎨
⎩1 +

12ŝ+ẑ
9 α̂ +

ẑ(−
√

3+ẑ)
216 α̂2 + ẑ2−36ŝ2−6ŝẑ

54 β̂ + ẑ2(ẑ−6ŝ)

648 α̂β̂ − ẑ2[ẑ(9
√

3+ẑ)−60
√

3ŝ]β̂2

38880

1 + 2ẑα̂
9 + ẑ(ẑ−12ŝ)

27 β̂ − ẑ3α̂β̂

324 +
ẑ3(

√
3+ẑ)β̂2

3888

⎫⎬
⎭ .

(B.4)

Both the linear chirp and the quadratic curvature have a minor influence on the position of the
amplitude peak, because the main contribution factors to the expression in equation (B.3) are
of the second order in α̂ and β̂. Nevertheless chirps have a strong effect on the position of the
imaginary part peak due to the first-order contribution.

To estimate the central frequency shift of the FEL radiation along the undulator, we
consider the derivatives of I on ŝ and ξ̂ . Derivatives on ξ̂ will give information on the shift

12



J. Phys. A: Math. Theor. 42 (2009) 045202 A A Lutman et al

in the case of a seed much shorter than Green’s function, while derivatives on ŝ will give
information when the seed is longer than the Green’s function.

∂I

∂ξ̂
= 3

2
− 9ξ̂

ẑ
+

α̂(4ŝ + ẑ − 4ξ̂ )

2
+

β̂(ẑ2 + 48ŝξ̂ − 4ẑξ̂ − 12ŝ2 − 10ŝẑ)

12
+

α̂2ẑ(ẑ − √
3)

144

− α̂β̂ẑ2(6ŝ + ẑ − 12ξ̂ )

432
+

ẑ3β̂2

144

(
ŝ − ξ̂

ẑ
√

3
+

√
3 + 9ẑ − 60ξ̂

180

)
, (B.5)

∂I

∂ŝ
= −α̂(ẑ − 2ξ̂ ) + β̂

[
ŝ(ẑ − 2ξ̂ ) +

ẑ2

36
− 5ẑξ̂

6
+ 2ξ̂ 2

]
+

ẑ2α̂β̂(
√

3 − 6ξ̂ )

432

+
ẑ2β̂2

144

[
1√
3

(
ξ̂ − ŝ − ẑ

12

)
+

ŝẑ

3
− ẑ2

36

]
. (B.6)

For the frequency chirp in the FEL radiation, we consider the second derivatives of the phase
on ŝ and ξ̂ , obtaining the expressions

∂2I

∂ξ̂ 2
= −9

ẑ
− 2α̂ +

(
4ŝ − ẑ

3

)
β̂ +

ẑ2α̂β̂

36
−

√
3 + ẑ

432
β̂2ẑ2 (B.7)

and

∂2I

∂ŝ2
= β̂(ẑ − 2ξ̂ ) +

ẑ − √
3

432
ẑ2β̂2. (B.8)

Equations (B.7) and (B.8) show that a short seed will have a strong intrinsic chirp, and its
frequency chirp will be more affected by the linear chirp of the energy electron bunch than by
the curvature. In contrast the frequency chirp in the case of a longer seed will mostly depend
on the curvature of the electron bunch energy.
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